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Abstract

In this paper we describe geometric reasoning employed in a model-
based vision system that uses surface data. Such reasoning is used to
draw inferences about the spatial relationships between objects in a
scene based on the fragmentary and uncertain geometric evidence provided
by an image.

The paper reports on three aspects of our current work: understand-
ing and properly specifying the tasks of a visual geometry reasoner, the
types of geometric constraints that can bte defined when three-
dimensional data 1is paired to three-dimensional models, and a parallel

network computation for evaluating the constraints.
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Introduction

A competent vision system needs to be able to locate objecis In the
environmen. as well as identify them. Hence, it is necessary to derive
and i1ntegrate position information franm data elements paired with model
features. Thnere are additional applications of geometric reasoning in

the context of model-based vision:

- the prediction of image locations {[or other properties] for zddi-

tional evidence and

- testing of proposed model-to-data pairings by ensuring the
geometric relationships embodied in the model are upheld by the

data.

The first major section of this paper summarises a recent study [1]
of several high-performance vision systems, classifying the tasks and
operaticns used in their visual analysis. Analysis has shown that there
are a few simple underlying geometric operations but that the types of
models and data used drastically affect the machinery required to imple-

ment them.
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Severzl recent vision projects here
on recognising z=nd locating objects using surface based mcdels znd 3D
suriface data. The justification for this effort is twc-fold. First,
rzgzzroh into recognition based on  edgss has shewn neow fragils this

zpprsach Is. Second, much low-lavel vision researcn is investigating

delivery of some form of 3D scene descriptions, whose advantages zre:
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tergretation of surface data is unambiguous {unlike intensity
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data, which can arise from several scene effects) and (2] 3D gives



direct information about the scene (unlike projectec intensity images,.
In consequence, our research has been investigat.ng using surfaces as

the primary data and model features.

To exploit the richer information in surface data, we have been
investigating surface-based object representations [3}. Object primi-
tives are represented using groups of rigidly connected surfaces, which
have been segmented into regions of near constant shape character.
Larger objects are hierarchically defined by connecting previously
defined subcomponents, where the connections need not be rigid. Surface
primitives promote direct pairing between model and data surfaces,
easier extraction of object positions (using the 3D data) and easier
prediction of feature visibility. Related work 1is also investigating
the role of other geometric entities in the data and models (e.g.

volumetric and boundary representations].

One important research question that has arisen from the conjunc-
tion of the model and data types is: what constraints on object position
arise fram the pairing of a model feature with a data feature? This is
complicated, because of (1) the variety of data and model features, (2)
the variety of constraints types obtainable from pairing such features
and (3] the existence of constraints that are only partial. This paper

reports our recent work in this area.

Finally, we have been investigating mechanisms for implementing ihe
geometric reasoning functions needed for vision. Some of the difficul-

ties in this area lie in:

- integrating partial constraints,



- coping with datz errors,
- finding fast mechanisms.

The final main section of this paper summarises initial results in
new research into a parallel network geometric reasoning engine. The
network uses inequality constraints (the arcs) on individual geometric
variables (the nodes). Integration of constraints occurs when the net-
work converges to a consistent state. The structure of the network is
predefined using same extensions of ACRONYM's [U] constraint manipula-

tion system. This allows slow symbolic manipulation at network defini-

tion time, yet fast execution during recognition.

2. Geometric Reasoning for Model-Based Vision

The ability to reason about the geometry of a scene is an essential
aspect of any sophisticated vision system. Geometric reasoning can be

understood at tnree levels:

1) the various tasks that a vision system requires of a geometric

reasoner (section 2.1),

2) the ideal data types and operations required for the tasks (section

2.2) and

3) the implementations of the cperations {secticn 2.3j. As we will
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see, it is zasier to formuiate the reguirsd ope

perfect impleamentations.

2.1. Geometric Reasoning Tasks

A geometric reasoner is characterised by the tasks that it 1is

expected to carry out. Based on an analysis of existing vision systams,



we have identified the following tasks.

Establishing Position Estimates

Every identified feature in an image can be usecd to form position

constraints, first because the feature is visible, and second through
its measurable properties (location, shape, dimensions and so on). In
order to aggregate information from related features it must be possible

to combine individual position constraints into a single position esti-

mate. During such combination, the detection of inconsistent con-

straints is required to eliminate false hypotheses (formed, for example,

from erroneous feature identifications).

It may be necessary to transform position estimates into another

reference frame before other functions are applied. One example of this

is when the position of a feature in an object's reference frame is
desired, given only knowledge of the feature relative to a subcomponent

and the subcomponent relative to the object.

If the modeled relation between parts of the same object involve

degrees of freedom then there has to be scome variable binding.

Image Prediction

Given a position estimate for an object it should be possible to

oredict the appearance and location of its featurss. This allows com-

parison between the predicted and observed features, and affords a basis
o

for reasoning about occlusion effects. Additionally, image prediction

can be used to search for features not already found.



Predicted leatures are not necessarily pixel type entities. They
may also be more symbolic entities such as points, lines, surfaces, nor-
mals etc. Furthermore, real images are formed from objects 'with exact
positions, but predicted images may involve objects whose positions are
only roughly known, hence the predictions should be able to represent

some kind of uncertainty.

2.2. Geometric Reasoning Functions

The second descriptive level of geometric reasoning concerns the
abstract data types and operations required for the tasks described

above.

Positions

Geometric reasoning requires a data type for representing posi-
tions. The traditional representation by three translational and three
rotational degrees of freedom is not adequate for our purposes. Exten-
sions are needed for:

- uncertainty present in image measurements,
- modeling objects with positional degrses of freedom, znd
- modeling objects with size variation or tolerances.

Positions z21so transform points, vectors and other pesitions from
one coordinate frame Lo another {e.g. the posiztion of a subcomponent i3
gquivalent to a transformation from the object's to the subcomponent's
coordinate refarence frame.) Hence, if we extend the notion of position
from a point to a region of 6D parameter space, then these transforma-

tions are no longer one to one mappings, and we will have to deal with



uncertain points and vectors.

In what follows we will be giving same simple cata type specifice-
tions [5} using the operators FRAME and PLACED (capital letters will be
used for all operatars). Both operate on members of the set Position
and return members of the set Model. The latter includes the special
models World and Camera so that we can have world centered and viewer
centered coordinate systems as well as relative positions between

models. Thus we write the functionality of FRAME and PLACED as:

FRAME: Position -> Model

PLACED: Position -> Model

FRAME returns the model whose frame is the reference frame of a position

and PLACED yields the model placed by a position.

Estimating Positions from Features

Each pairing of a model to a data feature produces constraints on
the position of the model to which the feature belongs. We have then an
operation, LOCATE, whose inputs are the model feature and the image
feature and that yields a position estimate whose FRAME is the Camera

and whose PLACED object is the model.
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LOCA eature, Model feature -> Position u {undefzned

-

E: Image
for all . ¢ Image_Feature and f_ ¢ Model Feature:
let p = LOCATE(f , r ]
if p = undefined then
FRAME(p) = Camera &
PLACED(p) = m

where: m is the model to which fm belongs,
u stands for set union, and

{undefined} is a set with one member - the undefined object.

LOCATE returns 'undefined' to signal an invalid pairing between

incompatible image and model features.

Merging Positions

In general models consist of more than just a single feature. If
several features are identified in the date and produce constraints on
the object position, then we need to verify geometric consistency and

merge estimates.

The MERGE operation acts on sets of pcsitions and returns a posi-
tion. The result is only defined when all the input positions have the

same coordinate frame and refer to the same object. The ‘'inconsistent'
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sult means the input positions were inconsistent. If # Position) is

the pcwer set of Position (the set of all possible subsets cof



MERGE: #|Position) -» Position u {undefined, inconsistent|

for all m,, m, ¢ Model, S ¢ #( Position;:

let p = MERGE{S)
if {for all qe S: FRAME(q) = m, & PLACED(q) = m,) then

p = inconsistent or
FRAME(p) = m, and PLACED(p) = m,;

else

p = undefined

Transforming Position Constraints

Suppose we know the position of an object A relative to another

object B. This may occur if:
- they are parts of the same larger model assembly,

- we have a priori knowledge about their relationship (e.g. the posi-
tion of the camera in the world) or

- we observe the relationships between their features in the image

{e.g. "face 1 of A is against face 2 of B").

Two geometric problems then arise. First, if we know the position
of A in the frame of same other object C, what is the position of B in
this frame. Second, if instead we know the position of C in A's frame,
what 1is the position of C in B's frame. These problems require the
operations TRANSFCRM and INVERSE that obey the fcilowing rules in rela-

tion to the operators FRAME and PLACED.



TRANSFORM: Position, Position -> Position v ‘undefinec:
INVERSE: Position -> Positiorn
for ell p, q ¢ quition
let r = TRANSFORM{p, q,
if PLACED(p) = FRAME(q) then
FRAME(r, = FRAME(p) &
PLACED(r) = PLACED{q)
else
r = undef ined
for all p ¢ Position
FRAME{ INVERSE(p)) = PLACED(p)

PLACED( INVERSE{p)) = FRAME(p)

Now if we represent by X/Y a position whose FRAME is X and

PLACED object is Y, our two problems can be written as:

C/B = TRANSFORM{C/A, A/B) {1st prodblen]
3/C = TRANSFORM(INVERSZ(A/B,, A/C, | 2nd probiem|

Image Prediction

Image prediction involves several operations that differ

ar

Wwhat s being predicted. Typical image predictions zare:

fzature sppearance,

- feature loccation (image and scenej,
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- feature relative depth (e.g. surface ordering and occlusion rela-

tions),

The operation to be performed in any given prediction task depends
on both the task and nature of the feature whose image is being
predicted. For example, to determine whether z plane surface is front-
facing requires projecting a predicted surface normal along the line of
sight, but this operation would be insufficient if the surface were
curved. We abstract them all into the PREDICT operator, which must have

knowledge of the different feature types.
PREDICT: Model feature, Position -> Pred feature
where Pred feature is a separate data type from Image feature because it

must incorporate variations due to uncertain positions.

2.3. Review of Current Implementations

3

Some existing AI programs, including RAPT {6}, IMAGINE [2J and
ACRONYM {U], have geometric reasoning capabilities. RAPT, a robot plan-
ning program, and ACRONYM, a model-based vision program, both represent
and manipulate positions symbolically and exploit relationships between
symbolic expressions (equalities or inequalities) for their deductive
power. RAPT is less powerful as it can only deal with relationships that

are equalities. In contrast to these IMAGINE uses a numerical represen-

ot
f

tion schem2 with two separate position datz -“ypes. One type {homogene-

O

n

u matrix) is designed for the TRANSFORM operator and the other (param-
eter bounds) for MERGE. A problem with this scheme is that the matrix
type represents exact positions whereas the parameter bounds represent

rough positions and so conversion between the two forms involves loss of

1



information or approximatior.

ACRONYM represents pcsitions using 2 variable for each degree of
freedom. Constraints on positions are formed by reiating expressions irn
the variables to quantities measured fram the image and manipulated sym-

bolically.
The ideal constraint manipulation system (CMS) should be able to:

(a) decide if each variable has a value consistent with the constraint

set and
(b) bound any expression in the variables over the constraint set.

The operations MERGE, TRANSFORM and PREDICT are achieved by union-
ing constraint sets, simplifying symbolic compositions of positions anc

bounding expressions in variables.

Three advantages of using an aigebraic constraint representation

are

(1) - The representation is incremental in two senses. First, new con-
straints can be added when each new piece of evidence 1is
discovered. Second, new classes of constraints can be added when
new visual relationships are understood.

(2) - The representation is uniform, because it can represent 2z largs
raznge cof visual relationships using tne same mecranism.

(3) - A priori knowledge of scene relationships ,2.g. the obDject must

lie on the conveyor belt) is also expressible in algebraic form,

allowing direct integration with observed and model relations.

12



A2 think that ACRONYM offers the best representation and machinery

for geometric reasoning amongst those available.

3. Geometric Constraints from Surfaces

Most geometric reasoning operations (e.g. MERGE, TRANSFORM,
INVERSEj can be defined abstractly, based only on the representation for
positions. Hence, the key visual geometry problems are relating object

positions to image-model feature pairings (i.e. LOCATE and PREDICT).

Since we have been investigating using surface patches as the pri-

mary model and data descriptive primitive, the natural questions are:

- what geometric constraints can be obtained using these primitives,

and

- how can we represent them algebraically. This section attempts to

answer these questions.

([98]

Surface Data

The raw data used here is three dimensional surface information
including absolute surface depth and orientation, such as found in
Marr's 24D sketch [7} or as used in Fisher {2]. The data is organised
in a pointillist array aligned with a standard intensity image and seg-
menting the surface image into regions of nearly unifcrm shape, <¢harac-
terised by the two principal curvaturss znd tne surfzce boundary. While
tnere ar2 no well developed data acguisition systems that deliver high
quality surface descriptions of the scene, ssveral promising data
sources are under development, including laser striper range finders,

optical flow and stereo.

13



s of using surface information are:
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- surface information i1s explicitiy 3L, so 3D properties can be «cal-
culatec directly, rather than deduced from 2D image properties,

- surfaces can be segmented fran both the model and the data accord-
ing to the same criteria, hence producing directly corresponding
features [disregarding scale questions),

- it makes explicit features found on non-blocks-world objects [e.g.

curved surface patches),

- it makes explicit where occlusion occurs (depth discontinuity boun-

daries}

3.2. Surfacs-Based Modeling

Model-based object recognition regquires geometric object models.
Here, the models [2,3] are designed for object recognition, not image

creation, so the model primitives are based on matchable data features.

The models use surface patches as the major primitive, because the
surface 1s the primary data unit (though space curves and blob-like
volumes are zl1so represented). This allows more direct pairing of data
with models, comparison of surface shapes and estimation of model to

scene transfcrmation parameters.

=

large class of objects can be

(1]

[A8]

surfaces o

[\Y]

t is umed that tn

=
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n

n

o patches of nearly constant shape. The sur-

cr

z2pproximately segmented in
face patches are then described by their principal curvatures and boun-
dary. Surfzces have zero, one or two directions of curvature [positive

or negative). Size and shape descriptions can involve variable quanti-

14



T1es. Genera. algebraic constraints involving variables can be

inciuded.

Objects are recursively constructed fram sﬁrfaces or subobjects
using coordinate reference frame transformations. Each structure has
its own local reference frame transformation and larger structures are
constructed by placing the subcomponents in the reference frame of the
aggregate. Variables occurring in the expressions that define the

attachment relationship allow partially constrained relative placement.

One additional class of feature is the viewpoint dependent feature,
such as the tangential boundary on a cylinder. The cylinder has no such
boundaries in its definition, but we generally observe these because of
the viewer-object relationship. While the existence of these can be
deduced from the geometric model, we assume here that the model

represents them explicitly.

Other features of the models not discussed here are: viewpoint
dependent feature groupings and scale-based object representation sim-

plifications.

3.3. Geometric constraints from model to data feature pairings

In ACRONYM {U] a single constraint is generatad by first measuring
upper and lower bounds for some scalar quantity, S, and then relating
these values ToO a xnown algebraic expression, Z, wnich involves a sub-
set, Q, of the quantifiers or variables of intsrest. If Su and sl are
the upper and lower bounds on the true value of 3 then the contribution

fram the constraint would be the inequalities:

E(Q) s S,

15
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ACRONYM, however, dealt only with constraints generated fram pair-
ing 20 edge features with a restricted vocabulary of model primitives.
Here, we want to deal with richer 3D descriptions for both images and
models, and have found it useful to classify the types of constraints

generated by pairings of the various image and model features.

A1l measurements from 3D images take the form of vectors: point
locations or directions in space. Constraints are then generated by
pairing up the measured vectors with corresponding vectors in some model
frame. When it is possible to make this pairing on a one-to-one basis
we classify the constraint as type A. When there is ambiguity and we
can only make the correspondence with scme range of model vectors then

the constraint is of type B.

Consider the example of a straight edge segment whose endpoints are
obscured. The observed direction of the edge corresponds directly with
its direction in the model frame and therefore generates a type A con-
straint on orientation. However, the visible length, 1, is less than
the true length lO’ and the visible endpoints do not correspond with the
actual endpoints but with ranges of length (1, - 1,. Consequently, the

0
translational constraint generated from the endpoints is type B.

Constrzints can be further divided zccording ¢ the number, m, of
point position vectors and number, n, of direction vectors invoclved. ror
type A constraints, if m = 0 or [m + nj < 3 tne model position is not
fuily constrained. Type B consiraints, because they always involve some

ambiguity, are never fully constraining. However, in any model to image

pairing there will normally be several feature pairings and their

16



degrees degrees of fre=~dom may well be orthogonal so that their combine?

effect 15 to fully constrain the model position.

For dealing with errors we have adopted a scheme whereby point vec-
tors have associated error spheres and direction vectors have error
cones. An estimated point position is therefore given by four numbers:
three for the location and one for the radius of the sphere containing
the true point. Similarly, an estimated direction is associated with
three numbers: two for the nominal direction and one for the cone angle

containing the true direction.

Suppose that a type A constraint involves the pairing of model
point Pm with image point Py and model direction dm Wwith image direction

di‘ If P; and di are error free, then we can write:

and

where R is the rotational and t the translational part of the model

position. If pi has error sphere radius ¢ and di error cone angle py

then the constraints would take the form:

]R(pm) +t-p |< ¢

iy T .
Rid )-d; 2 cos(u!

These two =2quations exemplify the constraint equations generated by the
measurement of, respectively, location and direction vectors. For each

additional direction or point vector involved in a constraint another

17



similar equation is generated.

The equational form of type E constraints is similar to that shown
above except that d and p, are parameterised by one or more variables.
The variables are themselves subject to inequalities describing their
allowed ranges. In the example of a straight edge with its ends
obscured, the locus of model points corresponding to the visible end at
P. 1is a 1line which can be parameterised by a single variable, B. We

1

have {ignoring errors):

and

We now illustrate constraint generation with a practical example.
Figure 3-ia depicts a scene containing & cylindrical shaped surface
patch and figure 3-1b depicts the features recorded in the model. The
model patch 1lies on a notionally infinite cylinder of radius r lying
along the x-axis. Four segments bound the patch, two straight and two

circular, meeting at the points labelied A, 3, C and D.

18



Figure 3-1: 3) data surface patch, EJ model patch, and g) obscured data patch.

We assume that the vision system has been able to identify the
individual features of the patch so that the scene points A, B and C can
be labelled as in figure 3-1a (the point D is not visible]. There are
then several constraints available from the data which together are more
than enough to fully constrain the position of the patch. Each visible
boundary vertex, A, B and C, together with the tangents to the boun-
daries defining them, give a type A constraint involving one point loca-
tion vector {m=1) and two direction vectors (n=2/. The circular arcs
AFB and EC imply the position of axis points Ml and M2 as well as the
direction of <cylinder axis - two type A constraints with m=1 and n=1.
The lines BC and AX and the surface normals zlong them give similar con-
straints as does the obscuring boundary FE since we know that the sur-

face normal along FE is perpendicular to the line of sight.

when many of the type A features are obscured we have to resort to

type B features. In figure 3-1c we see that most of the patch is hidden

19



pehind an obscuring object {shaded). None of the verticies are visible -
instead we can only see where the boundary segments have been truncated
at points A', B' and C'. As before the obscuing boundary FE and the
arcs A'FB' and EC' can be used to estimate the point positions Ml and M.
and the cylinder axis direction. This still leaves z rotational degree
of freedom - the angle ¢ around the cylinder axis. To constrain this
angle we can use the arcs A'FB' and EC' in a similzr fashion to the
example above of a 1line with its endpoints obscured. We then obtain

type B constraints which narrow down the range of possible values of ¢.

Every feature in a modelling scheme is capable of producing con-
straints which <can be exploited by the geometric reasoner. We are
currently engaged in compiling a catalogue of the constraint types
available from the various features of the surface based scheme
described above. This will be used by the geometric reasoner to
automatically relate any perticular featue pairing to ineqgualities
involving estimated quantities and free variables appropriate to that
pairing. These inequalities will be the input to the constraint solving

engine described in the next section.

4. A Network-Based Geometric Reasoning Engine

Since <the geometric constraints defining c¢bjsct position are
definec algebraiecally, following ACRONYM 4], one mignt use ACRONYM's
constraint manipulation system [CMS). This CMS couid bound exprassions
over non-linear inequalities and achieved respectable performance

through = combination of case analysis and considerable symbolic alge-

bra.

20



The advantage of using symbolic algebra instead of merely bounding
each term 1s seen in the following example. Suppose we wish to bounc
the expression "A*B", where A and B are functions of X, which must 1lie
in the range [1,2]. Suppose A = X and B = 2 / X. Bounding A¥*B by
bounding and multiplying the individual terms gives the range [1,&].
However, using symbolic algebra to reduce A*B first, gives the tighter

bound [2,2].

Unfortunately, symbolic algebra is expensive computationally and we
aim to eventually analyze scenes in real time. Hence, we are adapting
it for use in a parallel evaluation network. ACRONYM's CMS is wused to
derive symbolic bounds on non-observable values (e.g. object orienta-
tion) in terms of observable values (e.g. direction of a surface nor-
mal), which would initially be expressed as variables. These bounds
define a network of nodes representing expressions linked by their alge-
braic relationships. The network can be pre-compiled before any obser-
vations, with sections activated only when appropriate evidence 1is

obtained.

The network is evaluated in parallel when image evidence is
obtained to [1) provide bounds on position and size parameters and (2,
determine if an inconsistency is present (e.g. Wwrong model or model-data

pairing). The parallel evaluation provides the necessary performance.

The methodology we are investigating is summarised in figure Y-
below. At the top the constraint schemas discussed in section 3 ars
combined with models to define sets of algebraic constraints. Image
observables are represented by variables at this stage. These con-

straints are then algebraically manipulated to produce a set of

21



inequalities bounding each variable. An extended constraint man:pula-
tion systeam (CMSJ based on ACRONYM's CMS 1s then used to form tighter
bounds on each variable. The inequalities define the nodes and arcs in
a network fragment, that are associated with object hypotheses to form
complete networks (with inter-linkages through shared variables). When
observable variables get bound to measured values the other variables

(e.g. model or position variables) are forced into consistency.

Figure ﬂ-l: Network Definition from Geometric Consfraints

At present, the definition of the network metnod is largely only a
paper exercise. However, the example in section 4.5 should show the

feasibility of the approach, which we are continuing to investigate.

In tne discussion below, the term symbolic CMS means our adaptation
and improvement of ACRONYM. The term network CMS means the compiled
network, which implements the same function as the symbolic CMS in a

different manner.

22



i.l. Constraint Networks

A set of algebraic constraints can be viewed as a graph, where <th¢
nodes represent expressions and the arcs represent inequality relation-
ships [binary) between them. Each node is identified with a processor

and the arcs provide bounding input values.

We illustrate the network structure with the fragment for the ine-
quality "A &€ B - C" in the given variables. (Whether the variables
represent model, position or observable values is not important.) Twe
other equivalent relations are "C £ B - A" and "B 2 A + C". (E.g. we
want to bound all variables by expressions in other variables.) The sym-
bolic CMS is then used to calculate supremum and infimum expressions for
some of these variables. This gives:

sup(A) € sup(B - ¢) s sup(B) - inf(C)
sup(C) < sup(B - &) s sup(B) - inf(A)
inf(B) 2 inf(a + ¢) 2 inf(A) + inf(C)
This formulation suggests introducing new nodes to represent expres-

sions, and new processing elements for combining bounds.

A value node is now associated with each value, whether a variable
or an expression, and represents the current supremum and infimum of the

value. Hence the nodes relate to: {A, B, C, B-C, B-A, A+C}.

The comput ation for the supramum (e.g. sup(A}J picks the minimum of
each bounding expression on the supramum, including the current

B { - .
supremum, because the bounds can never get worse {(assuming & bound 1is
{

always valid,. Hence, if:
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sup(A] s X

v

sup{A} s
then:

sup(At§1) <- min(sup(At,, Xeo Yy,

is the updating function for the supremum of A.

Since the bounding expression for "sup{B - A)" is a function of two
expression bounds, we need to introduce arithmetic nodes into the net-
work to compute tne these functions. {Because sane constraints are
dependent on the sign of the expressions, gating nodes are also used in

the networks, but are not exemplified here.)

Applying these ideas results in the network shown in figure U4-2.
This fragment 1is just for the single inequality given, and other con-

straints will introduce new nodes and linkages.

Figure 4-2: Network Fragment for "4 s B8 - C"

In execution, scme variables acquire explicit bounds froam measure-
ments. The network then iteratively computes bounds on each expression

until the network converges. The bounds give the allowable range for

24



the variables consistent with alil measurements and constra:nts. This
implements the LOCATE and MERGE functions. Inconsistency 1is detectec
wnen "sup X, < inf(XJ" for sane expression X. The PREDICT function is
implemented by examining the bounds on variables related to measure-

ments, given boundings on other variables.

4.2. Extensions to ACRONYM's CMS

ACRONYM does not handle certain quadratic functions well. For
example, with the following set of constraints, it fails to achieve the
minimal upper bound. If:

0 s xg2

0sys?2

X +y £ 2
then ACRONYM derives 4 as an upper bound on xy, whereas 1 is the correct
upper bound. This weakness stans fran not treating quadratic expres-

sions as special cases.

The symbolic CMS we use is based on ACRONYM, but has been extended
to give better bounds on functions of the form:

A*x2 + B¥*¥x + C

A*cos(x) + B*sin(x)
Wwhere we have numerical bounds on A, B8, C, znd x. The extensions ars

not included here for brevity.

These extensions are particularly important because of the presence
of rotation expressions in visual geometry, which often contain terms of

the above form. (The cos(x) and sin(x) terms can be represented as vy
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ny

and v/ 1 - y<,,

4.2. Network Pre-Compilation

Section 3 showed that 2 series of algebraic constraints could be
defined for different evidence types and model-data pairings. Though
numerous, it is possible to enumerate all constraints on each structure
before making any observations, except in the case where the number of
data items is indeterminate (such as the number of surface normals
observed for a given surface). Disallowing this case, the complete set
of constraints on a model are represented with symbolic variables for

each potential observed value. This constraint set would also include

constraints defined as part of the model.

Whenever any measurements related to the object were made, then the
related constraints could be enabled, or included in an active set.
Alternatively, one could initialise all bounds on observed variables to
be infinite.

Both defining the full constraint set and applying the symbolic CMS
to produce symbolic bounding expressions can be done at model-
compilation time. This may be slow, because there may be many variables
in the expressions at this stage. However, this is unimportant, because
this stage is done off-line. The only occasions for repeating the

naiLtysls ar

W
[{}]

- new constrzaints types become understood and generated, and
- new CMS te=chniques are implemented.
There is no difference in canpetence between the symbolic CMS and

the network, provided data variables are set only to numbers. If they
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acquired values containing variables, then the symbolic CMS might be
able to improve the bounds on the other variables. Because the data
variables are intended to represent measured quantities, the competence
assumption is reasonable. Hence, the only real difference between the
two is performance, where using the network has clear run-time advan-
tages because it can be executed in parallel using simple arithmetic

units.

Using the symbolic CMS with sane measured values might produce a
simpler constraint expression than that containing measurement vari-

ables. For example, it may reduce

sup(x) = min(5, 10%*x)

to

sup{x) 5
when the constraint "x 2 1" is added. However, since the network exe-

cutes in parallel, no significant execution time differences should

occur.

4.4, Example

The geometric reasoning pramoted in this paper is illustrated by an
example of ceonstraining position variables. The problem is simplified

to two dimensions for illustration.

Figure 4-3a snhows a hypothetical unit line segment. 1It's locaticn
is defined by the translation of 1its central point and orientation
ianti-clockwise] about the central point. The model segment is {radun-
dantly) characterised by its position in a local coordinate frame:

P, = (0,0)
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its direction:
dm = {1,0,
and its normal:

n = (0,-1]

Figure 4-3: Model and Data Line Segment

Suppose the model appears in the scene with the rotation & and

translation t = (t_,t

p ; (see figure 4-3b). Here, & = -w/4 and ty =

v)

(0,0). Hence, the scene position, direction and normal are:

Py = Rop *+ ty = [tx,ty,‘ = (0,0) (1)
d, = (0.7,-0.7)
n, = (-0.7,-0.7)
where R9 is';he rotation matrix:
cos{9) -sin|2)
sin(eg cos(aj
Suppose next that we observe an estimated normal ﬁd = (ﬁx,ﬁy) at

sane unknown point vd on the segment:
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Vd = pC ¢ l‘dd tzj
anc hypothesise that 1 ¢ -0.4,0.4,. This is a type B constraint |(see
section 3] because we do not know which model point exactly corresponds

with the point we measure.

Let the observed location be v = {V_ ¥ Since our observations

must have some error, we know that:
v"9|551 (3)
1-ﬁ-nd552 (u)
Assume €, = 0.05 €, = 0.005.
Constraints (1) - {4) above define the position of the segment.
The reasoning task is to combine the constraints to bound the possible
range of its positions. Constraints (1) and (2] are part of the model,
whereas [3) and (M) are returned by the LOCATE function. Representing

all constraints in the network implements the MERGE function.

Hence, our problem is to bound the position variables 8, tx’ ty and

1 given the observed variables ﬁx’ ﬁy, v, and Gy. Assume that we

observe the true normal at the true central point. Then:

n

(-0.7,-0.7)

v = (0,0)

The geometric constraints (1) - (4] reduce to a set of algebraic
constraints on the variables, such as:
t_ < 0.05 - l*cos(s)
£, % -0.05 - 1*cos(3)

cos|(8) € -1.34 - sin{3

1 0.4

[ 72}

plus a general equality:

29



| cos{e) | = V{1 - sin®(g)]

These together define the network solving for the position vari-
ables. Figure 4-4 shows the fragment for the "x" and "cos(8)" nodes in

schematic form and embodies the relations between Gx’ £ 1 and cos(g).

x'
Fran constraints (1), (2) and (3] we know that:
| ¢

- l*cos{s) - t < e

X X |
The initial value ranges of the observed variables are inf[Gx) =

e, sup(GXJ =€y, inf{1} = -0.4 and sup(l) = 0.4.

Figure 4-4: Network Fragment for "X" Linked Nodes

Letting =his network converge, the following bounds on the position

variables are cocbtained:

-0.4 g1 50.4
-0.88 s 8 £ -0.68
-0.36 5 t_ < 0.36

-0.36 s ¢
3 v < 0.36
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Since this is equal to the best bounds obtainec by analytic solu-

tion, the network has been successful at bounding the variable values.

4.5. Network Behaviour

Three key computational questions are how does the network get

evaluated, does it converge and does it converge to the best bound.

The network is intended to be executed in paraliel, with each node
in a separate processor. It could be evaluated synchronously or asyn-
chronously in a MIMD processor with non-local connectivity, because
expression relationships are not regular. Since the size of the
expression relating two variables is typically less than 20 terms, and
since it appears to only take a few iterations (e.g. 5-10) to evaluate
the networks (at least the simple ones we've tried so far), we expect

fast convergence.

Here, parallel evaluation is simulated serially using conventional
programming (i.e. prolog). Keeping track of which dependent nodes need
re-evaluating when one node changes eliminates recomputation in stable

sections of the network.

It is easy to show that the networks must converge, that is, not
oscillate. At any time the current bounds on a value V must De true.
Then, if an upper bounding expression increases in value, the original
bounds on V must still hold, as it then makes no sense toc increase the
range of potential values for V. Hence, the bounds can only get
tighter, though perhaps asymptotically. As the bounds can only be equal
(inconsistency is declared if they cross), each bound has a limit, so

must converge.
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ACRONYM's CMS was optimal when producing numerically bounded var:-
atles [i.e. not resulting in expressions in other variables over sets
of linear constraints, based on work by Bledsoe [8] and Shostak ;9:.
Since we reproduce all alternatives of the symbolic reasoning in the
network, without substituting values for the data variables until later,
1t is likely to have the same performance on linear constraint sets, but

we have not proved this result.

As most of the constraints derived in the previous subsection are
non-linear, we cannot expect optimality. However, the inclusion of the
quadratic and trigonometric bounding extensions should improve perfor-

mance by accounting for most of the non-linear cases.

4.6. Continuing Research

Some areas where we are continuing research are:

trigonometric wrap-around

The example was set up so that we did not have Lo worry about cases

where cos(8) > 0.9 or cos(6) < -0.9.

If A can take values in the range [-r,s], then B/A can take any
value. Hence, this constraint is not useful until the sign of A is
known. Thereafter, the sense of the constraint depends on the
sign. Consequently, the network structure snhould probably allow

gating to switch on constraints when parity conditions hold.

automatic network compilation

The network should be autamatically constructed fram the con-

straints. Because the geometric constraints can be defined in
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standard form, isolating the variables, applying the symbolic ©CMC

and compiling the network should be easy.

5. Conclusions

This paper has discussed three topics relating geometric reasoning

to camputer vision:

(1) What tasks must a visual geometric reasoner perform and what func-

tions are needed to implement them?

(2) What classes of constraints exist fram pairing 3D model features to

3D image features, and how they can be represented?

(3) How the constraints can be represented in a computational network
to provide fast parallel bounding of variables and expressions,
which is necessary for real time estimation of object position and

model parameters?

Through analysing several high performance vision systems, the main
reasoning tasks identified were: forming position constraints, combining
constraints, detecting inconsistencies, transforming positions, variable
binding and feature prediction. The main functions needed to implement

the tasks were specified as abstract data types.

Sets of equality and inequality constraints were based on pairing
point znd vector features defined 3D model and data features. The con-
straints were represented in algebraic form. A network structure could
pe defined based on inequalities derived fram the constraints. This
network is suitable for parailel evaluation. An example of a network

that successfully performing geometric reasoning was given.
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This research is being pursued as part of & larger model-basec
visual scene understanding project, which is stiil being implementec.
Consequently, details of network reasoner performance on larger problems

are not yet available.
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