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Abstract

This paper examines the problem of predicting
when a model surface patch on a three-dimensional
object is totally back-facing, and hence need not be
searched for during object recognition. Examining
every point on the surface patch is inelegant and
impractical, yet difficulties arise with curved sur-
face patches. The paper concludes that visibility
can be determined from an analysis of the surface
orientation at the patch boundary for a wide class
of model surface patch types (i.e. those having con-
stant principal curvature signs), under orthographic
projection.

1 Introduction

A typical problem for three dimensional scene analysis (2]
is determining the visibility status of a particular feature.
This usually occurs during a model verification phase, when
a reference frame has been estimated for a model, and it is
then desired to verify the model by finding additional image
evidence. One approach to finding additional evidence is to
use the estimated reference frame with a geometric model
to predict the location of previously unmatched features, in
this case, surfaces.

When working in 3D scenes, this problem is compli-
cated because some surfaces will lie on the back sides of
objects where they are not visible (surfaces may also be self-
occluded, but that issue is not considered here). Hence, it is
important to determine whether the surface is even visible,
before searching for evidence for it. (We assume that sur-
face patches are one-sided, with an outward-facing surface
normal.)

The visibility of a patch can be classified (in the absence
of occlusion - self or external) as:

classification visibility

back-facing completely invisible surface
front-facing completely visible surface
tangential partially visible surface
degenerate tangential | seen as a curve

For this paper, we are only concerned with identifying the
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back-facing surface patches.

If all surfaces are planar, then determination of visibility
is easy: if the outward normal of a planar surface faces away
from the viewer, then the surface is back-facing. On generic
curved surfaces, it is not possible to determine visibility
from analysis at only a single point on the surface, because
it is possible for the surface to curve away from a back-
facing point to become forward-facing elsewhere. Moreover,
even if we know the visibility all along the patch boundary,
or at any incomplete set of points, the surface can still
deform internally to peek out from behind. Hence, the
general case cannot be solved.

Fortunately, if we make some restrictions on the shape
of the surface patch primitives, then it is possible to make
some conclusions. We show below that If the patch is a
surface with constant principal curvature signs, and
if every point on the boundary of the patch is back-
facing, and the patch is not a bubble patch (deflned
below), then the whole patch must be back-facing.

In the analysis below, we treat the surfaces as if made
of “tinted air” (in the words of Koenderink [4]). Hence, the
full extremal boundary is:

Definition 1 (Full Extremal Boundary) The set of all
points on the surface with the surface normal tangent to
the line of sight (i.e. even when occluded by closer surface
points) under orthographic projection.

As Koenderink [4, pg 420] says: “For a smooth object, it
is a smooth space curve; moreover, it is closed, although it
may be composed of several disconnected loops.”

We also use the term “full contour™:

Definition 2 (Full Contour) The orthographic projection
of the full extremal boundary onto the image plane.

Then, the bubble patch is:

Definition 3 (Bubble Patch) A surface patch is a ‘bubd-
ble patch’ if: (1) it is a portion of a surface with positive
gaussian curvature and (2) it is possible, for a viewer un-
der orthographic projection, to observe the patch such that a
closed non-degenerate full extremal boundary can be placed
on the patch, enclosing a forward-facing subset of the patch.
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A patch thet consists of the inside (or outside) of a sphere
except for a hole (where the back-facing normals are found)
is a bubble patch. Figure 1 illustrates an example of this
patch.

Each of the patches considered below could have in-
ternal holes in them, by which we mean that the surface
patch may have more than one boundary. However, since
we show that the external boundary determines if the patch
is back-facing, then all interior points must be back-facing.
Hence, the boundaries of new interior holes can only be
back-facing, too.

There may also be orientations of the patches where
forward-facing portions of the patch are not visible, because
they are obscured by other portions of the patch. This case
is not considered, because here the invisibility is caused by
occlusion rather than purely patch orientation.

2 The Visibility of Constant Cur-
vature Sign Patches

Constant curvature sign patches are patches whose princi-
pal curvature signs are constant over the patch. We need
only consider only the three signs (‘+’, ‘0’, ‘') for each
of the two principal curvatures, so this defines six surface
shape classes: l++l’ c+01 - (0_*_)' l+_! — c_+” sm" (_l, 0’
= ‘0-’. We now show that surface patches taken from these
shape primitives satisfy Theorem 1.

The proof uses a result from [3], that showed that the
product of the curvature of the full contour and the radial
curvature of the surface along the line-of-sight is equal to
the Gaussian curvature. We use this to determine the lo-
cal shape class of the surface at the boundary. That is,
the product of the signs of the full contour’s curvature and
the sign of the radial curvature must equal the sign of the
Gaussian curvature, which we know from the shape of the
model surface whose visibility we are analyzing.

Definition 4 (Constant Curvature Sign Patch) 4
patch is a “constant curvature sign surface patch” if it is C°
and the signs of its two principal curvatures do not change
over the patch.

Theorem 1 If (1) the surface normal at every point on the
boundary of a finite constant curvature sign surface patch is
back-facing, (2) the patch is viewed from a single viewpoint
projected orthographically onto an image plane (i.e. is not
simultaneously viewed from more that 180 degrees) and (8)
the patch is not a ‘bubble patch’, then the whole patch must
be back-facing.

Proof:

Assume that we have a constant curvature sign C? sur-
face patch oriented with backward-facing normals around
the patch boundary. We will show that if there is a forward-
facing patch internal to the patch boundary, then the patch
must be a bubble patch.
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Figure 1: Bubble Patch Example

If there is an internal forward-facing sub-patch, then
it must be enclosed by a full extremal boundary within
the whole patch (as the patch must proceed smoothly from
forward-facing internally to backward-facing at the patch
boundary on a C? surface). Refer to Figure 2.

Then, because the full extremal boundary is closed, it
must project onto the image plane either as (a) a closed
full contour (note, the full extremal boundary is a 3D space
curve, whereas the full contour is the corresponding 2D
image curve) or (b) a degenerate curve enclosing no area.
In the second case, the patch internal to the full extremal
boundary must then be everywhere tangential to the line
of sight, and thus cannot be forward-facing.

Because the surface is C? smooth, the full contour must
be smooth almost everywhere (except at a finite number
of cusps where the projection direction lies in the surface).
(The curve may cross over itself, but this is unimportant,
as we will only consider the boundary and the surface patch
locally adjacent to it.)

Consider now where the forward-facing surface must ex-
ist relative to the full contour. If it is on the outside (as

when looking through the inside of a torus), then there
must be another full extremal boundary outside of it be-

cause the forward-facing portion must eventually return to
back-facing at the patch boundary. The proof will enly
need to consider the outer full extremal boundary and so
we ignore the inner full extremal boundary. Hence, we need
only consider the case when the patch projects to inside the
closed full contour.

Then, the full contour must consist of convex, concave
and straight segments (segmented at inflexions and cusps),
where the convexity of the segment is determined by the
gide of the curve that the forward-facing surface patch lies
on. Refer to Figure 3, where the shading indicates where
the interior of the projected patch lies.

By Koenderink's result [3] (and noting that his results
also apply to concave hollows, by negating the curvatures
obtained assuming the surface were really a convex bump),
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Figure 2: Back-facing Patch With An Internal
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Figure 3: Extremal Boundary Projects To Contour

we can deduce the local shape of the full contour and in
which direction the surface bends at the full extremal bound-
ary, from the sign of the Gaussian curvature (which we
know from the type of model patch). Hence, a concave seg-
ment (concave relative to the region inside the full contour)
implies that the local surface curvature along the segment
must be ‘+-. Similarly, a convex segment implies that the
local surface curvature must be either ‘++’ or ‘--’, depend-
ing on whether the surface faces inward or outward (Figure
3 parts a and b). A straight segment implies the surface
must be developable, with curvature ‘0+’ or ‘0-’ (the case
‘00’ does not occur because it cannot have.a full extremal
boundary). Because the surface has constant curvature
sign, this implies that the projected curve must consist of
either all convex, all concave or all straight segments. We
consider each case separately below.

Consider an arbitrary set of convex full contour seg-
ments (e.g. Figure 4 part a) and assume we have a ‘++’
surface. Then, the surface must curve away from the viewer
and continue to curve in this direction (otherwise the patch

would contain a concave or hyperbolic sub-patch). This is
the bubble patch exception. A similar argument holds if the
patch has the *-* shape.

Next, consider a set of concave segments, implying a ‘+-
* surface (see Figure 4 part b). At each vertex on the full
contour, the corresponding surface must alternatively curve
away and towards the viewer on opposite sides of the vertex
(i.e. the vertex must be a cusp formed by the projection
of an asymptotic direction), or else we would have either
a crease or a tip of a ‘hyperbolic cone’ surface, both of
which violate our C? assumption. Hence, we must have
an even number of segments to the full contour (an odd
number implies a vertex where both folding surfaces go in
the same direction) and the surfaces at the corresponding
full extremal boundary must alternatively curve towards
and away from the viewer.

Consider now a reduced version of the patch, where the
back-facing portion has been shrunk so it extends only a
small amount beyond the full extremal boundary. The pro-
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Figure 4: Possible Closed Contour Shapes

jection of this new patch boundary must lie within the full
contour, as the full contour is the projection of the full
extremal boundary and hence, locally, all of the projected
surface must lie inside the full contour (refer to Figure 5).

Given the conclusions about alternate directions of sur-
face bending, the new patch boundary must then lie alter-
natively above or below the forward-facing patch. As the
patch boundary must be connected, and its projection must
lie within the full contour, and that it cannot pass through
the forward-facing patch, the sections of the patch bound-
ary can only be connected up at the cusps of the full contour
(as shown). This violates our assumption that the normals
at the patch boundary are back-facing, as all normals along
the line-of-sight through the cusp are perpendicular to the
line-of-sight. Hence, a forward-facing subpatch cannot exist
on a hyperbolic surface.

We lastly consider the all-straight-line case (see Figure
4 part c), which implies a developable surface. The full con-
tour must have a corner (e.g. point Z) where two segments
meet (or else there is only one segment and the patch is seen
edge on and hence is neither back nor forward-facing). At
this corner, the surface must become extremal in the same
direction across both segments (as the patch has the same
curvature signs everywhere). However, this implies that
the corner is locally like the tip of a cone, or that there
is a crease. Both cases violate our assumption of surface
smoothness. Hence, this projection could not exist.

QED

3 Discussion

The results given above hold for orthographic projection,
but extensions exist for perspective projection. Quadratic
surface patches and patches taken from a torus (assuming
they are from the regions with constant Gaussian curvature
sign) satisfy the assumptions of the theorem. Hence, the
results allow us to determine when patches of most of the
types currently used for model-based vision are back-facing.

We still have the problem of determining if all bound-
ary points are back-facing. Fortunately, this is not such a
problem, as we usually have an analytic description of the
boundary curve, from which we can determine the nearest
surface point, and from the surface’s analytic description,
determine the normal. Finally, given the reference frame
estimate, we can predict the orientation of that normal rel-
ative to the camera. While this still requires some effort,
the computational complexity of this boundary prediction

process is O(n) instead of O(n?) for the surface.

We also have the problem of determining if a given
model patch is a bubble patch. As this is independent of
viewpoint, this can be determined in advance and recorded
in the model.

In practice, reference frame estimates often include some
uncertainity, because of measurement error and uncertain-
ity in feature correspondence, etc. Hence, some nearly tan-
gential surfaces (i.e. surfaces whose normals are nearly per-
pendicular to the line of sight) may be either totally back
or forward-facing, depending on small changes in viewpoint.
So, visibility analysis with real data will need to consider
this problem (e.g. as in {2]).

Back-facing visibility analysis is not a complete visibility
analysis, as forward-facing surfaces may still be partially
or totally invisible, because of occlusion by closer object
surfaces. We have detected instances of these by a ray-
casting image synthesis [2], but sometimes simpler forms
of on-line analysis are possible (e.g. with polyhedra). At
present, to avoid the computational expense, we record the
visibility information for significantly different viewpoints
explicitly in a viewer-centered portion of the full geometric
model (1.

When working with curved objects, there is certainly
a greater possibility that a surface patch will be visible at
the extrema of the object than a planar patch (that must
be invisible for one-half of the viewsphere). However, ex-
cept for simple objects, there will usually be enough surface
patches that some will be totally back-facing, and hence the
analysis presented in this paper is useful.
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